Difference between revisions of "TDSM 8.11"

From The Data Science Design Manual Wikia
Jump to: navigation, search
(Created page with "Proof for <math> 2\times 2</math> square matrix (higher degree matrixes proof is similar): Let <math> L = \begin{bmatrix} 1 & 0\\ l & 1 \end{bmatrix} </math>, <math> U = \...")
 
 
(2 intermediate revisions by 2 users not shown)
Line 21: Line 21:
 
</math>
 
</math>
  
Let <math> M =  
+
<math> M =  
 
\begin{bmatrix}
 
\begin{bmatrix}
 
m_1 & m_3\\
 
m_1 & m_3\\
 
m_2 & m_4
 
m_2 & m_4
 
\end{bmatrix}
 
\end{bmatrix}
</math> is an invertable matrix <math>\Rightarrow x_4x_1 - x_2x_3 = 0</math>
+
</math> is a non-invertable matrix <math>\Rightarrow m_4m_1 - m_2m_3 = 0</math>
  
 
<math>\iff (lu_3+u_2)u_1 - lu_1u_3 = 0</math>
 
<math>\iff (lu_3+u_2)u_1 - lu_1u_3 = 0</math>

Latest revision as of 13:15, 7 December 2017

Proof for [math] 2\times 2[/math] square matrix (higher degree matrixes proof is similar):

Let [math] L = \begin{bmatrix} 1 & 0\\ l & 1 \end{bmatrix} [/math], [math] U = \begin{bmatrix} u_1 & u_3\\ 0 & u_2 \end{bmatrix} [/math]

[math] \Rightarrow LU = \begin{bmatrix} u_1 & u_3\\ lu_1 & lu_3+u_2 \end{bmatrix} [/math]

[math] M = \begin{bmatrix} m_1 & m_3\\ m_2 & m_4 \end{bmatrix} [/math] is a non-invertable matrix [math]\Rightarrow m_4m_1 - m_2m_3 = 0[/math]

[math]\iff (lu_3+u_2)u_1 - lu_1u_3 = 0[/math]

[math]\iff u_2 u_1 = 0[/math]

[math]\iff u_1 = 0[/math] or [math]u_2 = 0[/math] (proved)