Difference between revisions of "TDSM 8.9"

From The Data Science Design Manual Wikia
Jump to: navigation, search
(Created page with "LU factorization of a matrix is not necessarily unique. Example: proof for <math>2 \times 2</math> square matrix: Let <math> L = \begin{bmatrix} 1 & 0\\ l & 1 \end{bmatrix}...")
 
 
Line 30: Line 30:
 
<math>\Rightarrow \left\{
 
<math>\Rightarrow \left\{
 
   \begin{array}{lr}
 
   \begin{array}{lr}
     u_1 = x_1 & \\
+
     u_1 = m_1 & \\
     lu_1 = x_2 & \\
+
     lu_1 = m_2 & \\
     u_3 = x_3& \\
+
     u_3 = m_3& \\
     lu_3 + u_2 = x_4
+
     lu_3 + u_2 = m_4
 
   \end{array}
 
   \end{array}
 
\right.
 
\right.
 
</math>
 
</math>
  
Let <math>x_1 = x_2 = 0 \Rightarrow</math> There are 3 equations for 4 variables <math>\Rightarrow</math> There are many value for <math>l</math> satisfies the equations.
+
Let <math>m_1 = m_2 = 0 \Rightarrow</math> There are 3 equations for 4 variables <math>\Rightarrow</math> There are many value for <math>l</math> satisfies the equations.
  
 
<math>\Rightarrow</math> LU factorization of <math>M</math> not unique.
 
<math>\Rightarrow</math> LU factorization of <math>M</math> not unique.

Latest revision as of 01:47, 12 December 2017

LU factorization of a matrix is not necessarily unique. Example: proof for [math]2 \times 2[/math] square matrix:

Let [math] L = \begin{bmatrix} 1 & 0\\ l & 1 \end{bmatrix} [/math], [math] U = \begin{bmatrix} u_1 & u_3\\ 0 & u_2 \end{bmatrix} [/math]

[math] \Rightarrow LU = \begin{bmatrix} u_1 & u_3\\ lu_1 & lu_3+u_2 \end{bmatrix} [/math]

Let [math] M = \begin{bmatrix} m_1 & m_3\\ m_2 & m_4 \end{bmatrix} = LU [/math]

[math]\Rightarrow \left\{ \begin{array}{lr} u_1 = m_1 & \\ lu_1 = m_2 & \\ u_3 = m_3& \\ lu_3 + u_2 = m_4 \end{array} \right. [/math]

Let [math]m_1 = m_2 = 0 \Rightarrow[/math] There are 3 equations for 4 variables [math]\Rightarrow[/math] There are many value for [math]l[/math] satisfies the equations.

[math]\Rightarrow[/math] LU factorization of [math]M[/math] not unique.