Difference between revisions of "TDSM 2.9"

From The Data Science Design Manual Wikia
Jump to: navigation, search
 
Line 1: Line 1:
 
When all terms <math> x_0 = x_1 = \dots = x_{n-1} </math>
 
When all terms <math> x_0 = x_1 = \dots = x_{n-1} </math>
  
The arthmetic mean is <math>\frac{1}{n} \sum_{i = 0}^{n-1} = \frac{1}{n}\times nx_0 = x_0</math>
+
The arthmetic mean is <math>\frac{1}{n} \sum_{i = 0}^{n-1} = \frac{1}{n}\cdot x_0 = x_0</math>
  
 
The geometric mean is <math> \sqrt[n]{\prod_{i = 0}^{n-1}} = \sqrt[n]{x_0 ^n}  = x_0</math>
 
The geometric mean is <math> \sqrt[n]{\prod_{i = 0}^{n-1}} = \sqrt[n]{x_0 ^n}  = x_0</math>
  
 
So the arithmetic mean equals the geometric mean when all terms are the same.
 
So the arithmetic mean equals the geometric mean when all terms are the same.

Latest revision as of 18:48, 11 September 2017

When all terms [math] x_0 = x_1 = \dots = x_{n-1} [/math]

The arthmetic mean is [math]\frac{1}{n} \sum_{i = 0}^{n-1} = \frac{1}{n}\cdot x_0 = x_0[/math]

The geometric mean is [math] \sqrt[n]{\prod_{i = 0}^{n-1}} = \sqrt[n]{x_0 ^n} = x_0[/math]

So the arithmetic mean equals the geometric mean when all terms are the same.